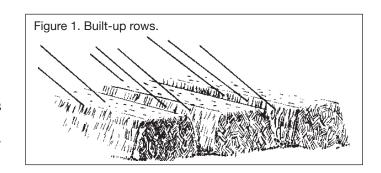


Raised-Bed Gardening In Alaska

HGA-00132

A laska's climate and geographical diversity create many challenges for the home gardener. Cold soils, excessive or inadequate rainfall and poor soil conditions are among the more challenging aspects of gardening in many areas. Raised-bed gardening can help overcome the problems of wet, cold and poorly drained soils. Gardeners who do not have a garden spot located in a south-sloping, well-drained, sunny area can use raised beds with productive results.

Benefits of raised beds:


- Plant growth is enhanced through soil warming, which
 results from an increased drainage capability and
 an increase in the exposure of the soil surface to the
 direct rays of the sun.
- Productive growing areas can be developed in locations where conventional gardening techniques are not possible. Raised beds reduce the effort and back bending involved in planting, weeding and harvesting.
- Many raised beds are intensively managed and therefore have high production rates per square foot.

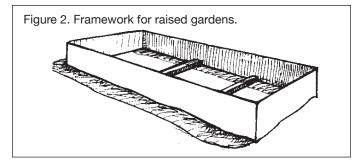
Before you build raised beds, either mounded or framed, have the soil tested to determine what fertilizer and liming additives are needed. The soil test will help you determine the amount of lime required to raise the soil pH and the type and amount of fertilizer needed for sustained plant growth.

Materials are usually added to increase the soil fertility or air exchange and water drainage characteristics of the soil. Some materials used are sand, compost, manure and peat moss. Use a rototiller or spade to mix the lime, fertilizers and other materials into the soil.

A raised-bed garden can be as simple as a mound of soil that is higher than the surrounding soil level. Or, you can mound the soil in a framework of lumber, like a bottomless box.

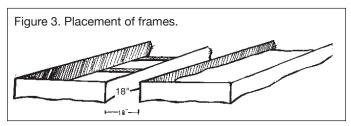
The simpler form of raised bed is constructed by mounding soil into a ridge approximately 12 inches high with sloping sides and a top surface 18 to 24 inches wide (see figure 1). This ridging method provides the benefits of a raised bed and requires less energy and expense. The dis-

advantage is that it may erode and the sloping sides may have to be rebuilt after heavy rain or wind.


Some of the advantages of the ridging technique can be achieved by digging parallel walkways into the existing garden plot and placing the soil from the walkways onto the plant growing area. The sides of the walkways (ditches) should be sloped to prevent soil collapse.

A framed raised bed offers all the advantages of a mounded raised bed without the problems of erosion or soil movement. It also provides an elevated working platform for planting and weeding. The framework for the bed should be built so the soil does not bend or dislodge the frame.

Build the frame of $2 \times 12s$ securely fastened at the corners. At 2- to 4-foot intervals either drive stakes into the ground or use cross members on the bottom of the frame to prevent bowing from the pressure of the soil (see figure 2).


The wood can be treated with a wood preservative to prevent rot. (Note: Do not use creosote and pentachlorophenol because these chemicals may damage plants upon contact.) A frame liner of polyethylene can be used to keep the soil from direct contact with the wood.

The dimensions of the raised bed depend upon a number of factors: space available, anticipated production, materials available and the size of the garden. The width should be such that the gardener can comfortably reach to the middle from either side. In wet climates this should not exceed 48 inches to provide good drainage. A width of 36 inches is better yet.

Prepare the soil and fill the frame to about 12 inches deep. The amount of soil required can be determined by the container dimensions — length \times width \times height. A container 20 feet long, 3 feet wide and 1 foot deep will require 2.2 cubic vards: 20 feet \times 3 feet \times 1 feet = 60 cubic feet \div 27 feet (1 cubic yard) = 2.2 cubic yards.

Place the constructed frames in a location with a suitable growing environment and adequate drainage. Multiple beds should be placed at least 24 inches apart to provide a walkway. A board placed across this space gives the gardener a comfortable place to sit or kneel while working. A gravel walkway will provide a cleaner, drier walkway throughout the season (see figure 3). Alternately, flatten corrugated cardboard and place on the walkway. Then place 2 inches of wood chips on the cardboard.

An addition that can increase the efficiency of raised beds is a simple technique that produces a greenhouse effect: hood the bed with a clear polyethylene film row cover supported by a framework of hoops of 12-gauge wire or PVC pipe (at least ³/₄ inch(attached to the sides of the wooden frame. This technique increases soil and air temperature, reduces the amount of rain on the bed in areas of excessive rainfall and reduces moisture evaporation in areas of insufficient rainfall.

Temperature control extends the growing season. A 4-mil polyethylene or fiberglass-reinforced polyethylene should be used to avoid wind damage. The sheeting can be attached to the bed by lath or by grommets placed along the bottom edge of the sheeting and secured over nails along the bed (see figure 4).

Place the beds so the plants can take fullest advantage of available sunlight. Arrange plants so one plant does not shade another as it grows. The air and soil temperature under the cover can increase dramatically during a sunny day and get so hot the plants can be damaged or killed. Ventilation slits and

Figure 4. Temperature and moisture control.

open ends in the polyethylene sheeting help avoid excessive heat buildup, which could damage the plants. Complete removal of the sheeting may sometimes be necessary. When the growing season is over, the polyethylene sheeting can be removed and stored for the next season.

Many gardeners grow crops under floating row cover instead of polyethylene film. Floating row cover is a translucent, lightweight polyester fabric that is placed directly over transplants. The edges of the floating row cover are secured by pieces of wood or stones. Sufficient slack is allowed for plants to grow under the row cover. Floating row covers provide protection from many flying insects and from wind, and they also increase the air and soil temperatures beneath them.

Tilling or turning the soil will help reduce future populations of slugs and root maggots by bringing the eggs and pupae to the surface where they are exposed to changing weather conditions and potential predators. Covering the soil surface with spruce boughs or seaweed can reduce soil puddling and compacting resulting from fall and spring rains.

Many garden crops thrive in raised beds. These include lettuce, radishes, Swiss chard, carrots, cabbage, Brussels sprouts, cauliflower, beets, turnips, zucchini, peas, potatoes and, in the warmer areas, tomatoes, cucumbers and beans. Using raised beds can provide the gardener with increased production and decreased maintenance.

www.uaf.edu/ces or 1-877-520-5211

Robert Gorman, Extension Faculty, Agriculture and Horticulture. Originally prepared by Jim Douglas, former Extension Resource Development and Youth Agent, and Ken Mitchell, Master Gardener.

America's Arctic University

Published by the University of Alaska Fairbanks Cooperative Extension Service in cooperation with the United States Department of Agriculture. The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution. ©2012 University of Alaska Fairbanks.